If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144x-16x^2=200
We move all terms to the left:
144x-16x^2-(200)=0
a = -16; b = 144; c = -200;
Δ = b2-4ac
Δ = 1442-4·(-16)·(-200)
Δ = 7936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7936}=\sqrt{256*31}=\sqrt{256}*\sqrt{31}=16\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-16\sqrt{31}}{2*-16}=\frac{-144-16\sqrt{31}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+16\sqrt{31}}{2*-16}=\frac{-144+16\sqrt{31}}{-32} $
| -2+7a=2a-12 | | p+52=9 | | -8x+7-6(x-1)=-6x-(7x-5)+6 | | (3x+18)+(6x-16)+43=180 | | x-(1/3x)+14=30 | | (X+27)=8x | | 3x(-5)-9=X | | 2/6v-1/7v+14=20 | | 2x-1+14=14 | | 3n-6(8+5n)=-129 | | 12(4+8x)=17. | | 20=5/4x+5 | | z=8(20)+40 | | -7x-16=(x+6) | | (5x+18)+(4x)+81=180 | | −4(p+6)=8p | | 4•(x+3)=2•(12-x) | | 2/3n+7=15. | | 6(1-2v)=102 | | 4x–9=6x–1 | | z=5(20+75) | | 4•(x+3)=2•(12-x | | -16+3n=-8+3n | | x+7-7/6=2x/30+7/30 | | (5x-3)+(x+9)+90=180 | | 96=k+20 | | -33+8x=-3(3x+6) | | 3(w+8)=5w+44 | | 31/2/121/4=10/x | | -5=6x+4+3 | | -2.6b+4=0.98b-17 | | X=6,y=10 |